A quantitative trait locus ( QTL) is a locus (section of DNA) that correlates with variation of a quantitative trait in the phenotype of a population of . QTLs are mapped by identifying which molecular markers (such as SNPs or AFLPs) correlate with an observed trait. This is often an early step in identifying the actual that cause the trait variation.
Typically, QTLs underlie continuous traits (those traits which vary continuously, e.g. height) as opposed to discrete traits (traits that have two or several character values, e.g. red hair in humans, a recessive trait, or smooth vs. wrinkled peas used by Gregor Mendel in his experiments).
Moreover, a single Phenotype trait is usually determined by many genes. Consequently, many QTLs are associated with a single trait. Another use of QTLs is to identify underlying a trait. The DNA sequence of any genes in this region can then be compared to a database of DNA for genes whose function is already known, this task being fundamental for marker-assisted crop improvement.
An early attempt by William Ernest Castle to unify the laws of Mendelian inheritance with Darwin's theory of speciation invoked the idea that species become distinct from one another as one species or the other acquires a novel Mendelian factor. Castle's conclusion was based on the observation that novel traits that could be studied in the lab and that show Mendelian inheritance patterns reflect a large deviation from the wild type, and Castle believed that acquisition of such features is the basis of "discontinuous variation" that characterizes speciation. Darwin discussed the inheritance of similar mutant features but did not invoke them as a requirement of speciation. Instead Darwin used the emergence of such features in breeding populations as evidence that mutation can occur at random within breeding populations, which is a central premise of his model of selection in nature. Later in his career, Castle would refine his model for speciation to allow for small variation to contribute to speciation over time. He also was able to demonstrate this point by selectively breeding laboratory populations of rats to obtain a hooded phenotype over several generations.
Castle's was perhaps the first attempt made in the scientific literature to direct evolution by artificial selection of a trait with continuous underlying variation, however the practice had previously been widely employed in the development of agriculture to obtain livestock or plants with favorable features from populations that show quantitative variation in traits like body size or grain yield.
Castle's work was among the first to attempt to unify the recently rediscovered laws of Mendelian inheritance with Darwin's theory of evolution. Still, it would be almost thirty years until the theoretical framework for evolution of complex traits would be widely formalized. In an early summary of the theory of evolution of continuous variation, Sewall Wright, a graduate student who trained under Castle, summarized contemporary thinking about the genetic basis of quantitative natural variation: "As genetic studies continued, ever smaller differences were found to mendelize, and any character, sufficiently investigated, turned out to be affected by many factors." Wright and others formalized population genetics theory that had been worked out over the preceding 30 years explaining how such traits can be inherited and create stably breeding populations with unique characteristics. Quantitative trait genetics today leverages Wright's observations about the statistical relationship between genotype and phenotype in families and populations to understand how certain genetic features can affect variation in natural and derived populations.
An example of a polygenic trait is human skin color variation. Several genes factor into determining a person's natural skin color, so modifying only one of those genes can change skin color slightly or in some cases, such as for SLC24A5, moderately. Many disorders with genetic disorder are polygenic, including autism, cancer, diabetes and numerous others. Most phenotypic characteristics are the result of the interaction of multiple genes.
Multifactorially inherited diseases are said to constitute the majority of genetic disorders affecting humans which will result in hospitalization or special care of some kind.
Thus, due to the nature of polygenic traits, inheritance will not follow the same pattern as a simple monohybrid cross or dihybrid cross. Polygenic inheritance can be explained as Mendelian inheritance at many loci, resulting in a trait which is normally-distributed. If n is the number of involved loci, then the coefficients of the binomial expansion of ( a + b) 2n will give the frequency of distribution of all n allele . For sufficiently high values of n, this binomial distribution will begin to resemble a normal distribution. From this viewpoint, a disease state will become apparent at one of the tails of the distribution, past some threshold value. Disease states of increasing severity will be expected the further one goes past the threshold and away from the statistical mean.
The more genes involved in the cross, the more the distribution of the will resemble a normal, or Gaussian distribution. This shows that multifactorial inheritance is polygenic, and genetic frequencies can be predicted by way of a polyhybrid Mendelian cross. Phenotypic frequencies are a different matter, especially if they are complicated by environmental factors.
The paradigm of polygenic inheritance as being used to define multifactorial disease has encountered much disagreement. Turnpenny (2004) discusses how simple polygenic inheritance cannot explain some diseases such as the onset of Type I diabetes mellitus, and that in cases such as these, not all genes are thought to make an equal contribution.
The assumption of polygenic inheritance is that all involved loci make an equal contribution to the symptoms of the disease. This should result in a normal (Gaussian) distribution of genotypes. When it does not, the idea of polygenetic inheritance cannot be supported for that illness.
While schizophrenia is widely believed to be multifactorially genetic by Biopsychiatry, no characteristic genetic markers have been determined with any certainty.
If it is shown that the brothers and sisters of the patient have the disease, then there is a strong chance that the disease is genetic and that the patient will also be a genetic carrier. This is not quite enough as it also needs to be proven that the pattern of inheritance is non-Mendelian. This would require studying dozens, even hundreds of different family pedigrees before a conclusion of multifactorial inheritance is drawn. This often takes several years.
If multifactorial inheritance is indeed the case, then the chance of the patient contracting the disease is reduced only if cousins and more distant relatives have the disease. While multifactorially-inherited diseases tend to run in families, inheritance will not follow the same pattern as a simple monohybrid cross or dihybrid cross.
If a genetic cause is suspected and little else is known about the illness, then it remains to be seen exactly how many genes are involved in the phenotypic expression of the disease. Once that is determined, the question must be answered: if two people have the required genes, why are there differences in expression between them? Generally, what makes the two individuals different are likely to be environmental factors. Due to the involved nature of genetic investigations needed to determine such inheritance patterns, this is not usually the first avenue of investigation one would choose to determine etiology.
Another interest of statistical geneticists using QTL mapping is to determine the complexity of the genetic architecture underlying a phenotypic trait. For example, they may be interested in knowing whether a phenotype is shaped by many independent loci, or by a few loci, and do those loci interact. This can provide information on how the phenotype may be evolving.
In a recent development, classical QTL analyses were combined with gene expression profiling i.e. by . Such expression QTLs (eQTLs) describe Cis-acting- and Trans-acting-controlling elements for the expression of often disease-associated genes. Observed epistasis have been found beneficial to identify the gene responsible by a cross-validation of genes within the interacting loci with metabolic pathway- and scientific literature databases.
The term 'interval mapping' is used for estimating the position of a QTL within two markers (often indicated as 'marker-bracket'). Interval mapping is originally based on the maximum likelihood but there are also very good approximations possible with simple regression.
The principle for QTL mapping is: 1) The likelihood can be calculated for a given set of parameters (particularly QTL effect and QTL position) given the observed data on phenotypes and marker genotypes. 2) The estimates for the parameters are those where the likelihood is highest. 3) A significance threshold can be established by permutation testing.
Conventional methods for the detection of quantitative trait loci (QTLs) are based on a comparison of single QTL models with a model assuming no QTL. For instance in the "interval mapping" methodMapping Mendelian factors underlying quantitative traits using RFLP linkage maps. ES Lander and D Botstein. Genetics. 1989 the likelihood for a single putative QTL is assessed at each location on the genome. However, QTLs located elsewhere on the genome can have an interfering effect. As a consequence, the power of detection may be compromised, and the estimates of locations and effects of QTLs may be biased (Lander and Botstein 1989; Knapp 1991). Even nonexisting so-called "ghost" QTLs may appear (Haley and Knott 1992; Martinez and Curnow 1992). Therefore, multiple QTLs could be mapped more efficiently and more accurately by using multiple QTL models. One popular approach to handle QTL mapping where multiple QTL contribute to a trait is to iteratively scan the genome and add known QTL to the regression model as QTLs are identified. This method, termed composite interval mapping determine both the location and effects size of QTL more accurately than single-QTL approaches, especially in small mapping populations where the effect of correlation between genotypes in the mapping population may be problematic.
Inclusive composite interval mapping (ICIM) has also been proposed as a potential method for QTL mapping.
|
|